cs.AI updates on arXiv.org 10月03日
线性回归中最小范数插值解泛化误差分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文利用spike covariance数据模型分析了线性回归中最小范数插值解的泛化误差,探讨了不同spike强度和目标-spike对风险的影响,并提出了泛化误差的精确表达式,对良性、温和及灾难性过拟合进行了分类。

arXiv:2510.01414v1 Announce Type: cross Abstract: This paper analyzes the generalization error of minimum-norm interpolating solutions in linear regression using spiked covariance data models. The paper characterizes how varying spike strengths and target-spike alignments can affect risk, especially in overparameterized settings. The study presents an exact expression for the generalization error, leading to a comprehensive classification of benign, tempered, and catastrophic overfitting regimes based on spike strength, the aspect ratio $c=d/n$ (particularly as $c \to \infty$), and target alignment. Notably, in well-specified aligned problems, increasing spike strength can surprisingly induce catastrophic overfitting before achieving benign overfitting. The paper also reveals that target-spike alignment is not always advantageous, identifying specific, sometimes counterintuitive, conditions for its benefit or detriment. Alignment with the spike being detrimental is empirically demonstrated to persist in nonlinear models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

线性回归 泛化误差 spike covariance
相关文章