cs.AI updates on arXiv.org 10月03日 12:14
神经网络CV重建方法突破自由能计算瓶颈
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种神经网络CV重建框架,直接从笛卡尔坐标学习CV,并通过自动微分提供雅可比矩阵,提高了自由能重建方法如GPR的准确性,拓宽了生物化学和材料模拟的范畴。

arXiv:2510.01396v1 Announce Type: cross Abstract: Free energy reconstruction methods such as Gaussian Process Regression (GPR) require Jacobians of the collective variables (CVs), a bottleneck that restricts the use of complex or machine-learned CVs. We introduce a neural network surrogate framework that learns CVs directly from Cartesian coordinates and uses automatic differentiation to provide Jacobians, bypassing analytical forms. On an MgCl2 ion-pairing system, our method achieved high accuracy for both a simple distance CV and a complex coordination-number CV. Moreover, Jacobian errors also followed a near-Gaussian distribution, making them suitable for GPR pipelines. This framework enables gradient-based free energy methods to incorporate complex and machine-learned CVs, broadening the scope of biochemistry and materials simulations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 自由能计算 CV重建 生物化学 材料模拟
相关文章