cs.AI updates on arXiv.org 10月03日 12:13
大型语言模型基准与聚合模式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了大型语言模型的基准及其聚合模式,发现两者发展存在互补但相反的动态。模型创建在全球范围内扩展,而基准影响力则呈现集中化趋势。

arXiv:2510.01286v1 Announce Type: cross Abstract: Large language models are proliferating, and so are the benchmarks that serve as their common yardsticks. We ask how the agglomeration patterns of these two layers compare: do they evolve in tandem or diverge? Drawing on two curated proxies for the ecosystem, the Stanford Foundation-Model Ecosystem Graph and the Evidently AI benchmark registry, we find complementary but contrasting dynamics. Model creation has broadened across countries and organizations and diversified in modality, licensing, and access. Benchmark influence, by contrast, displays centralizing patterns: in the inferred benchmark-author-institution network, the top 15% of nodes account for over 80% of high-betweenness paths, three countries produce 83% of benchmark outputs, and the global Gini for inferred benchmark authority reaches 0.89. An agent-based simulation highlights three mechanisms: higher entry of new benchmarks reduces concentration; rapid inflows can temporarily complicate coordination in evaluation; and stronger penalties against over-fitting have limited effect. Taken together, these results suggest that concentrated benchmark influence functions as coordination infrastructure that supports standardization, comparability, and reproducibility amid rising heterogeneity in model production, while also introducing trade-offs such as path dependence, selective visibility, and diminishing discriminative power as leaderboards saturate.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 基准 聚合模式 模型创建 影响力
相关文章