cs.AI updates on arXiv.org 10月03日
TUMIX:提升LLM推理性能的集成框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TUMIX框架,通过并行运行多个采用不同工具策略的代理,实现LLM推理性能的提升。实验表明,TUMIX在Gemini-2.5-Pro和Gemini-2.5-Flash推理基准上平均准确率提升3.55%,且在仅49%的推理成本下保持性能。

arXiv:2510.01279v1 Announce Type: cross Abstract: While integrating tools like Code Interpreter and Search has significantly enhanced Large Language Model (LLM) reasoning in models like ChatGPT Agent and Gemini-Pro, practical guidance on optimal tool use is lacking. The core challenge is effectively combining textual reasoning, coding, and search for diverse questions. In this paper, we propose Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses based on the question and previous answers. In experiments, TUMIX achieves significant gains over state-of-the-art tool-augmented and test-time scaling methods, delivering an average accuracy improvement of up to 3.55% over the best baseline on Gemini-2.5-Pro and Gemini-2.5-Flash across key reasoning benchmarks, with near-equal inference costs. We find that agent diversity and quality are crucial and can be enhanced by using LLMs to auto-optimize agent designs. Furthermore, TUMIX can halt refinement upon reaching sufficient confidence, preserving performance at only 49% of the inference cost. Further scaling can achieve higher performance, albeit at a greater cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 推理性能 TUMIX框架 工具使用 性能提升
相关文章