cs.AI updates on arXiv.org 10月03日
LLM幻觉检测:自信路由系统提升模型可靠性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于自信路由系统的LLM幻觉检测方法,通过主动评估模型不确定性,显著提升模型可靠性,降低计算成本。

arXiv:2510.01237v1 Announce Type: cross Abstract: Large Language Models suffer from hallucination, generating plausible yet factually incorrect content. Current mitigation strategies focus on post-generation correction, which is computationally expensive and fails to prevent unreliable content generation. We propose a confidence-aware routing system that proactively assesses model uncertainty before generation and redirects queries based on estimated reliability. Our approach combines three complementary signals: semantic alignment between internal representations and reference embeddings, internal convergence analysis across model layers, and learned confidence estimation. The unified confidence score determines routing to four pathways: local generation for high confidence, retrieval-augmented generation for medium confidence, larger models for low confidence, and human review for very low confidence. Evaluation on knowledge-intensive QA benchmarks demonstrates significant improvements in hallucination detection (0.74 vs. 0.42 baseline) while reducing computational costs by 40% compared to post-hoc methods. The F1 score improves from 0.61 to 0.82 with low false positive rates (0.09). This paradigm shift from reactive correction to proactive assessment offers a computationally efficient approach to LLM reliability enhancement.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 幻觉检测 自信路由 模型可靠性 计算成本
相关文章