cs.AI updates on arXiv.org 10月03日 12:11
基准评估:模型能力与性能的剖析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出基准评估框架,分析大型语言模型在不同基准测试中的认知能力贡献,揭示模型性能与实际能力的关系。

arXiv:2510.01232v1 Announce Type: cross Abstract: Large Language Models are commonly judged by their scores on standard benchmarks, yet such scores often overstate real capability since they mask the mix of skills a task actually demands. For example, ARC is assumed to test reasoning, while HellaSwag is designed to evaluate commonsense. However, we lack a systematic way to verify if these benchmarks actually measure these labels. We introduce Benchmark Profiling, a diagnostic framework that decomposes benchmark performance into ten cognitively grounded abilities. The method combines gradient-based importance scoring with targeted parameter ablation to compute an Ability Impact Score (AIS) that quantifies how much each ability contributes to a model's success on a given benchmark. Profiling three instruction-tuned models across ten widely used benchmarks yields four key findings: (i) most benchmarks draw on several abilities rather than one, (ii) datasets with similar labels rely on distinct ability mixtures, (iii) code-generation benchmarks reward broad, multi-skill improvement and thus show only modest gains from narrow domain-specific fine-tuning, and (iv) abilities irrelevant to the task could negatively affect performance. Benchmark Profiling therefore explains why performance gains do not always translate into user-perceived competence and offers a transparent tool for benchmark audit and model interpretability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 基准测试 认知能力 模型性能 能力贡献
相关文章