cs.AI updates on arXiv.org 10月03日
高风险场景下自动摘要的可靠性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对高风险场景下自动摘要的可靠性问题,提出了一种结合不确定性量化与风险感知机制的大语言模型框架。通过构建条件生成式摘要模型,引入贝叶斯推理以建模参数空间的不确定性,并通过预测分布熵测量生成内容的置信度,从而避免过度自信的预测。此外,模型通过联合优化熵正则化和风险感知损失,确保信息压缩过程中关键信息的保留和风险属性的明确表达。实验与敏感性分析表明,该方法显著提高了高风险应用中自动摘要的鲁棒性和可靠性。

arXiv:2510.01231v1 Announce Type: cross Abstract: This study addresses the reliability of automatic summarization in high-risk scenarios and proposes a large language model framework that integrates uncertainty quantification and risk-aware mechanisms. Starting from the demands of information overload and high-risk decision-making, a conditional generation-based summarization model is constructed, and Bayesian inference is introduced during generation to model uncertainty in the parameter space, which helps avoid overconfident predictions. The uncertainty level of the generated content is measured using predictive distribution entropy, and a joint optimization of entropy regularization and risk-aware loss is applied to ensure that key information is preserved and risk attributes are explicitly expressed during information compression. On this basis, the model incorporates risk scoring and regulation modules, allowing summaries to cover the core content accurately while enhancing trustworthiness through explicit risk-level prompts. Comparative experiments and sensitivity analyses verify that the proposed method significantly improves the robustness and reliability of summarization in high-risk applications while maintaining fluency and semantic integrity. This research provides a systematic solution for trustworthy summarization and demonstrates both scalability and practical value at the methodological level.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动摘要 高风险场景 不确定性量化 风险感知 贝叶斯推理
相关文章