cs.AI updates on arXiv.org 10月03日
量子辅助聚类方法在图学习中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种混合量子-经典方法,用于图学习的无监督学习任务——关联聚类,通过递归划分方法在签名图中最大化簇内一致性,并使用量子退火技术解决二分步骤。实验结果表明,该方法在真实数据集和簇大小不平衡场景下,比经典算法在鲁棒性和聚类质量方面更优。

arXiv:2509.03561v1 Announce Type: cross Abstract: This work introduces a hybrid quantum-classical method to correlation clustering, a graph-based unsupervised learning task that seeks to partition the nodes in a graph based on pairwise agreement and disagreement. In particular, we adapt GCS-Q, a quantum-assisted solver originally designed for coalition structure generation, to maximize intra-cluster agreement in signed graphs through recursive divisive partitioning. The proposed method encodes each bipartitioning step as a quadratic unconstrained binary optimization problem, solved via quantum annealing. This integration of quantum optimization within a hierarchical clustering framework enables handling of graphs with arbitrary correlation structures, including negative edges, without relying on metric assumptions or a predefined number of clusters. Empirical evaluations on synthetic signed graphs and real-world hyperspectral imaging data demonstrate that, when adapted for correlation clustering, GCS-Q outperforms classical algorithms in robustness and clustering quality on real-world data and in scenarios with cluster size imbalance. Our results highlight the promise of hybrid quantum-classical optimization for advancing scalable and structurally-aware clustering techniques in graph-based unsupervised learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子计算 图学习 关联聚类 量子退火 无监督学习
相关文章