cs.AI updates on arXiv.org 10月03日
MetaboT:用大语言模型简化质谱代谢组学数据查询
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

质谱代谢组学产生了海量数据,需要先进的解释方法。知识图谱通过将质谱数据、代谢物信息及其关系构建成互联网络来应对这些挑战。然而,有效利用知识图谱需要深入理解其本体和查询语言。为了解决这个问题,研究人员设计了MetaboT,一个利用大语言模型(LLMs)将用户问题转化为SPARQL语义查询语言的AI系统,用于操作知识图谱。MetaboT采用多代理系统,将复杂任务分解,并使用LangChain和LangGraph库与外部工具集成。通过对比实验,MetaboT在回答代谢组学相关问题方面展现出远高于基线模型的准确率,为研究人员通过自然语言检索结构化代谢组学数据提供了便利。

💡 **MetaboT系统架构与功能**:MetaboT是一个AI系统,旨在简化质谱代谢组学数据的知识图谱查询。它利用大语言模型(LLMs)将用户以自然语言提出的问题转化为SPARQL语义查询语言,从而操作知识图谱。该系统采用多代理架构,将复杂任务分解为由专门代理管理的离散组件,并通过LangChain和LangGraph库实现LLMs与外部工具的集成,确保查询过程的结构化和效率。

⚙️ **查询生成与执行流程**:MetaboT的查询生成过程遵循结构化工作流,包括入口代理判断问题类型,验证代理确认问题与知识图谱的关联性,以及监督代理处理化学转换或标准化标识符的需求。知识图谱代理负责提取必要的URI或化学名称分类,最终由负责构建SPARQL查询的代理利用本体生成并执行查询,将结构化结果返回给用户。

📊 **卓越的性能表现**:通过与标准LLM(GPT-4o)进行对比测试,MetaboT在回答50个代谢组学相关问题时,准确率高达83.67%,远超基线模型(8.16%)。这一显著的性能提升突显了其多代理系统在准确检索实体和生成正确SPARQL查询方面的关键作用,为研究人员提供了高效的数据检索途径。

🚀 **降低技术门槛,促进数据驱动发现**:MetaboT通过自动化SPARQL查询的生成和执行,消除了传统上阻碍知识图谱访问的技术障碍。它不仅利用了LLMs的能力,还确保了实验数据与领域特定标准和数据结构的兼容性,从而弥合了复杂语义技术与用户友好交互之间的差距,有力地促进了数据驱动的科学发现。

arXiv:2510.01724v1 Announce Type: new Abstract: Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MetaboT 质谱代谢组学 知识图谱 大语言模型 SPARQL AI Mass Spectrometry Metabolomics Knowledge Graph Large Language Models AI
相关文章