Second Brain: Crafted, Curated, Connected, Compounded on 10月02日
数据库规范化与反规范化策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了关系数据库中反规范化作为一种优化读性能的策略,与数据库规范化的对比分析,以及两种方法在数据管理中的不同视角。

In the realm of Relational Databases, denormalization is a strategic process where we introduce precomputed, redundant data into an otherwise normalized database structure. This technique is primarily employed to enhance the read performance of the database.

At its core, normalizing a database is about eliminating redundancies and ensuring that each piece of information exists in only one place. However, denormalization takes a different approach. It acts as a counterbalance to a normalized table structure, offering a different perspective on data management. For a deeper dive into this concept, consider exploring Data Modeling Techniques, where the nuances of these two contrasting methodologies are juxtaposed.


Origin:
References:
Created 2024-01-14

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据库规范化 反规范化 数据管理 数据库性能 数据模型
相关文章