Second Brain: Crafted, Curated, Connected, Compounded on 10月02日
数据工程师的服务与自动化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章阐述了数据工程师在维护高质量、持续更新的数据集方面的重要性,特别是在Airbus公司使用Palantir Foundry(Skywise)数据湖解决方案的背景下。数据工程师的核心职责包括确保数据的可发现性,通过文档和元数据管理来维持数据概览。此外,他们还负责自动化数据科学和数据分析师手动执行的任务,如数据摄取、指标计算、异常检测、元数据管理、实验框架搭建、数据埋点以及依赖关系管理,这些自动化服务对于高效的数据驱动决策至关重要。

📊 **高质量数据维护与管理**: 数据工程师负责确保数据集的持续更新、高质量和良好的文档记录,例如在Airbus公司使用的Palantir Foundry(Skywise)数据湖解决方案中。通过严格的数据管理流程,他们保障了数据的可靠性和可用性,使数据科学家和分析师能够基于可信赖的数据进行工作。

⚙️ **核心服务自动化**: 数据工程师通过自动化数据科学和数据分析师手动执行的任务来提高效率。这包括数据摄取(从数据库、日志、API获取数据)、指标计算(如用户参与度、增长率)、异常检测(自动预警)、以及实验框架(A/B测试)的搭建。

📚 **元数据与数据可发现性**: 数据工程师构建工具来生成和管理元数据,使得数据仓库中的信息易于查找和理解。这对于避免数据混乱、保证数据概览的清晰至关重要,是数据工程的关键职责之一。

📈 **数据链路与用户行为分析**: 数据工程师还负责处理数据依赖关系,理解时间序列中的行动序列,从而帮助分析师洞察用户行为。同时,他们确保上游高质量数据的捕获(数据埋点),为数据分析奠定基础。

In order to get high-quality and frequently updated data sets, it is important to distinguish between data pipelines that are done and cleaned by data engineers and all the others that are mostly exploratory. We at Airbus use a folder that is called “cleaned” and all data sets produced there are constantly updated, documented, and of the highest quality. Based on these data sets you create your own. We use the data lake solution Palantir Foundry (brand name of Airbus: Skywise) which provides you with a map where you see the data lineage easily. Documentation and metadata to each data set are crucial as otherwise, you lose the overview of your data, which is also one main task of a data engineer.

# Services that a data engineer provides

Another important task or service that a data engineer provides is automation which data scientists or data analysts do manually. A good overview of what tasks this includes is provided by Maxime Beauchemin, the founder of Apache Airflow, a tool that helps a data engineer to lift the majority of tasks mentioned:

    data ingestion: services and tooling around “scraping” databases, loading logs, fetching data from external stores or APIs, …metric computation: frameworks to compute and summarize engagement, growth, or segmentation-related metricsanomaly detection: automating data consumption to alert people that anomalous events occur or when trends are changing significantlymetadata management: tooling around allowing generation and consumption of metadata, making it easy to find information in and around the data warehouseexperimentation: A-B Testing and experimentation frameworks are often a critical piece of a company’s analytics with a significant data engineering component to itinstrumentation: analytics starts with logging events and attributes related to those events, data engineers have vested interests in making sure that high-quality data is captured upstreamdependencies: pipelines that are specialized in understanding series of actions in time, allowing analysts to understand user behaviors"

While the nature of the workflows that can be automated differs depending on the environment, the need to automate them is common across the board—Maxime Beauchemin.

More on the Data Roles (Data Engineer).


Origin: Data Engineering, the future of Data Warehousing? | ssp.sh
References: Data Engineering, The role of a data engineer, When is a data engineer needed

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据工程 数据管道 自动化 数据管理 Palantir Foundry Skywise Data Engineering Data Pipelines Automation Data Management
相关文章