Second Brain: Crafted, Curated, Connected, Compounded on 10月02日
数据湖表格式中的自动模式演进
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

数据湖表格式中的自动模式演进是一项关键功能,它解决了数据工程领域中修改格式的挑战。模式演进允许无缝地添加新列或扩展数据类型,而不会破坏现有结构。虽然重命名或重新排序列也可能,但可能会影响向后兼容性。其优势在于能够仅更改单个表,并且表格式会有效地将这些更改传播到所有分布式文件,而无需重写整个表及其底层文件。文章还探讨了模式演进的模式,包括向后兼容性、向前兼容性、完全兼容性、破坏性更改、增量更改和版本控制,并提到了Schema Registry和Data Vault模型等相关工具。

🌟 **核心功能:自动模式演进** 自动模式演进是数据湖表格式中的一项核心功能,旨在简化和自动化数据工程中对数据模式的修改。它允许在不影响现有数据结构的情况下,轻松添加新列或更新数据类型,极大地提高了数据管理的灵活性和效率,避免了因模式变更而导致的数据处理中断。

🚀 **灵活的模式变更能力** 该功能支持多种模式变更操作,包括添加新列、扩展数据类型、重命名或重新排序列。虽然重命名和重新排序可能影响向后兼容性,但核心在于能够对单个表进行修改,并由表格式自动将这些更改高效地传播到所有分布式文件中,而无需对整个数据表进行昂贵的重写。

🧩 **模式演进的多种模式** 文章详细阐述了模式演进的几种关键模式:向后兼容性(新模式可解读旧数据)、向前兼容性(旧模式可理解新数据)、完全兼容性(兼具前后向兼容性)、破坏性更改(导致旧数据无法读取)以及增量更改(添加新字段同时保持原有数据完整性)。此外,版本控制是管理不同模式版本的重要策略。

🛠️ **相关工具与概念** 在模式演进的实践中,Schema Registry(如Kafka中的应用)起着至关重要的作用,用于管理模式版本和维护兼容性。文章还提及了Data Vault模型作为一种应对模式演进复杂性的策略性解决方案。此外,“数据契约”(Data Contracts)是一个与之密切相关的概念,两者在处理不断变化的数据模式方面有相似的起源和目标。

In the realm of data lake table formats, Automatic Schema Evolution emerges as a pivotal feature. It addresses the persistent challenge of modifying formats in the data engineering landscape. Essentially, Schema Evolution enables the seamless addition of new columns or the expansion of data types, all without disrupting existing structures.

Renaming or reordering columns is also feasible, though it may impact backward compatibility. The beauty lies in the ability to alter a single table, with the table format efficiently propagating these changes across all distributed files. Impressively, this does not necessitate a complete rewrite of your table and its underlying files.

Explore the Patterns of Schema Evolution:

    Backward Compatibility: Ensures new schemas can interpret old data.Forward Compatibility: Allows old schemas to understand new data.Full Compatibility: A harmonious blend of backward and forward compatibility.Breaking Changes: Modifications that render old data unreadable.Additive Changes: Introduces new fields while preserving existing data integrity.Versioning: Manages diverse schema versions to accommodate varied data structures.

Schema Registry tools, as exemplified in Kafka, play a crucial role in overseeing schema versions and safeguarding compatibility. Additionally, the Data Vault model offers strategic solutions to the complexities of schema evolution.

Consider Data Contracts, often synonymous with Schema Evolution, for a broader understanding of this concept.

Other noteworthy tools in this domain include Protobuf, Schemata, and buz.

# Context and relation to data contracts

Schema evolution was initially used by Kafka and its service Schema Evolution, whereas the term Data Contract came only up lately around 2022-09-22.

Both have similar origin stories to handle the ever-evolving database schema that changes all the time. But already before we had the term schema evolution, we had to manage schema changes and change management of databases. I’d argue we had to coordinate less with the outside world but with internal DWH customers or just business people who needed the data.

Traditional databases have schema evolution challenges, while modern distributed systems have data contracts to maintain.


Origin: Schema Evolution
References: Schema Drift
Created 2022-08-24

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据湖 表格式 模式演进 Schema Evolution 数据工程 Data Lake Table Formats Schema Registry Data Contracts
相关文章