Second Brain: Crafted, Curated, Connected, Compounded on 10月02日 21:10
数据虚拟化:整合多源数据,优化分析效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

数据虚拟化是一种整合来自不同技术、响应迅速的多个数据源的策略,尤其适用于不常运行大量操作型应用的场景。它通过创建一个语义层来构建业务模型,避免了数据迁移和预聚合。查询会被定向到相应的数据源,例如Dremio利用Apache Arrow技术进行内存优化,实现快速响应。数据虚拟化包含创建抽象层、统一数据视图、优化查询执行和管理缓存等。数据联邦是其一部分,专注于分布式查询执行和路由。它还能用于快速原型设计、自助式分析和满足法规要求,并可与数据湖结合使用,通过语义层而非数据移动来驱动分析。

💡 数据虚拟化通过创建抽象层,提供跨多个异构数据源的统一视图,避免了复杂的数据移动和复制,从而简化了数据访问和管理。它允许用户在不改变底层数据结构的情况下,构建业务模型和执行查询。

🚀 该方法通过将查询直接定向到源系统,并利用如Apache Arrow等内存优化技术(如Dremio所采用),能够显著提升查询性能,实现快速响应。这对于需要实时或近实时数据访问的应用场景尤为重要。

⚖️ 数据虚拟化不仅能解决数据不一致性问题,还能降低数据治理成本。它还可以作为一种快速原型设计工具,支持自助式分析,并帮助企业遵守关于数据移动的法规限制。

🔗 数据虚拟化与数据湖的概念常被提及,因为它可以轻松连接各种数据源到一个大型数据湖中。通过语义层定义业务逻辑,查询在需要时才推送到源系统,有效避免了数据冗余和不必要的计算成本。

Data Virtualization is particularly useful when you have multiple source systems from different technologies, all with relatively fast response times. If you don’t run many operational applications, you might consider Data Virtualization. This approach allows you to avoid moving and copying data around or pre-aggregating it. Instead, you create a Semantic Layer where you build your business models (like cubes), and queries to this data virtualization layer are then directed to the appropriate data source.

For example, Dremio uses Apache Arrow technology, which caches and optimizes a lot in-memory, resulting in impressively fast response times.

# Data Virtualization vs. Data Federation

Data Virtualization is the broader concept that includes:

    Creating an abstraction layer over multiple data sourcesProviding a unified view of dataManaging query optimization and executionHandling caching and performance optimizationCreating semantic models and business views

Data Federation is specifically the technique within data virtualization that:

    Handles the distributed query executionManages connections to different data sourcesRoutes queries to appropriate sources

Data virtualization can be an alternative strategy for addressing data inconsistencies and reducing data governance costs. Other use cases include:

    Rapid prototyping for batch data movementSelf-service analytics via a virtual sandboxCompliance with regulatory constraints on data movement

This concept is often mentioned in conjunction with Data Lakes, as you can easily create one by connecting various sources in a single, large Data Lake. Instead of moving data from point A to B, you have a Semantic Layer where you create your business logic, and queries are pushed down to the source systems only when needed. Pre-caching mechanisms using Apache Arrow, an optimized in-memory technology, can deliver ultra-fast response times. However, this approach does require significant memory resources.

“You don’t need to be Google or Netflix to generate (maybe not a Petabyte) but a Terabyte of useless data with destructive patterns. The same goes for wasted computing. You can have the best semantic view, but if you don’t mind the technical layer (e.g: leverage materialized view, be mindful of the refresh time), the cost can go bananas.” - Mehdi Ouazza on “semantic view” vs “technical layer” and computing Link

Dremio takes this concept further by building entire Data Lakehouses on top of it. For more information, see Build an open data lakehouse with Dremio and Airbyte. They have an interesting concept called Data Reflections (see RW Getting Started With Data Reflections Dremio).

# Virtualizations and comparison to Data Warehouse/Lake

For more information on this topic, see Data Virtualization vs Data Warehouse.

# Arisen Questions

    What’s the difference between a Semantic Layer and Data Virtualization?How is a Data Lakehouse considered a semantic layer (as Dremio calls itself a lakehouse platform), yet has many semantic layer features? Are they essentially the same?

Origin: OLAP, what’s coming next? | ssp.sh
References:

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据虚拟化 Data Virtualization 数据集成 数据湖 语义层 Apache Arrow Dremio
相关文章