Second Brain: Crafted, Curated, Connected, Compounded on 10月02日 21:09
数据湖:灵活存储与分析海量数据的解决方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

数据湖是一种灵活的存储系统,位于存储层,能够容纳海量结构化和非结构化数据,且数据存储时无需预设用途,提供了极大的灵活性和可扩展性。它可基于Hadoop、NoSQL、Amazon S3等多种技术构建,支持Excel、CSV、日志等多种数据格式。数据湖的出现源于捕捉和利用新型企业数据的需求,能够经济高效地存储原始数据,整合各类数据类型,并支持数据转换和新的处理方法,最终为特定用例提供聚焦分析。相比传统BI工具,数据湖能直接加载数据,简化ETL流程,加速数据访问,从而更快地提取商业洞察。

💡 **数据湖的核心价值在于其灵活性和可扩展性。** 它允许以经济高效的方式存储海量原始数据,无论数据结构如何,都能在一个统一的存储库中进行管理。这种设计避免了传统数据仓库对数据结构预设的严格要求,使得数据能够以最原始的状态被捕获和保存,为未来的各种分析和机器学习应用奠定基础。

🚀 **数据湖支持多样化的数据格式和技术。** 无论是Excel、CSV、文本文件、日志,还是更复杂的数据格式如Parquet和Arrow,数据湖都能轻松容纳。其底层可基于Amazon S3、Azure Blob等云存储服务,并可集成Hadoop、NoSQL数据库等技术,为构建强大的数据处理和分析平台提供了坚实的基础。

⏱️ **数据湖显著提升了数据访问和洞察提取的效率。** 通过直接加载数据并支持多种数据格式,数据湖绕过了传统ETL流程的耗时构建和维护。这大大缩短了数据准备时间,使得用户(从技术专家到业务分析师)能够更快地访问和探索数据,加速从数据中发现商业价值的进程,并支持快速迭代的分析需求。

A Data Lake is a versatile storage system, found within the Storage Layer, containing a vast array of both unstructured and structured data. This data is stored without a predetermined purpose, allowing for flexibility and scalability. Data Lakes can be built using a variety of technologies, including Hadoop, NoSQL, Amazon Simple Storage Service, and relational databases, and they accommodate diverse data formats such as Excel, CSV, Text, Logs, and more.

The concept of a data lake, as detailed in the Hortonworks Data Lake Whitepaper, emerged from the need to capture and leverage new types of enterprise data. Early adopters found that significant insights could be gleaned from applications specifically designed to utilize this data. Key capabilities of a data lake include:

    Capturing and storing raw data at scale affordablyHousing various data types in a unified repositoryAllowing data transformations for undefined purposesFacilitating new data processing methodsSupporting focused analytics for specific use cases

# Why Do You Need a Data Lake?

A data lake serves as a comprehensive storage solution, employing Data Lake File Formats and various Data Lake Table Formats to manage extensive volumes of unstructured and semi-structured data. As a primary destination for a growing assortment of exploratory and operational data, it caters to a broad spectrum of users, ranging from technical experts to business analysts, for diverse analytical and machine learning purposes.

The data lake model circumvents the limitations of traditional BI tools’ proprietary formats, offering direct data loading capabilities. This shift eliminates the time-consuming construction and maintenance of complex ETL pipelines and expedites data access, significantly reducing waiting times.

Early adopters of data lakes have demonstrated their efficacy in making data readily available and extractable for business insights. A data lake’s architecture enables efficient data storage and versatile transformations, facilitating swift iteration and exploration of business value on an ad-hoc basis.

Data lakes, as initially proposed in the 2014 Data Lake paper, can be constructed using various technologies and support multiple data formats, including Excel, CSV, Text, Logs, Apache Parquet, and Apache Arrow.

The foundation of every data lake is a basic storage provider like AWS S3 or Azure Blob, which is then enhanced with essential database-like features, further discussed in this article.

# Different Layers of a Data Lake

See Lakehouse.

# Deep Dives

Learn more in a deep dive I’ve written about Data Lake / Lakehouse Guide: Powered by Data Lake Table Formats (Delta Lake, Iceberg, Hudi), or a little older piece about Data Warehouse vs Data Lake | ETL vs ELT.

# Added Database and ML features

If you want to reach the next level of the data lake, you can build a Data Lakehouse, that mostly uses advanced features from the Data Lake Table Formats.


Origin: Data Warehouse vs Data Lake | ETL vs ELT | ssp.sh
References: Data Warehouse vs Data Lake Will a Data Lake replace the Data Warehouse

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Data Lake 数据湖 数据存储 数据分析 非结构化数据 ETL BI Machine Learning Hadoop NoSQL Amazon S3 Azure Blob
相关文章