Second Brain: Crafted, Curated, Connected, Compounded on 10月02日
数据工程师角色与数据生命周期
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

数据工程师在数据工程流程中扮演关键角色,负责从多种来源收集数据并确保其可用性。理解数据工程生命周期的各个阶段至关重要。此外,数据工程师需要具备评估数据工具的能力,考虑成本、速度、灵活性、可扩展性、用户友好性、可重用性和互操作性等因素。

🔍 数据工程师在数据工程流程中扮演关键角色,负责从多种来源收集数据并确保其可用性。理解数据工程生命周期的各个阶段至关重要。

🛠️ 数据工程师需要具备评估数据工具的能力,考虑成本、速度、灵活性、可扩展性、用户友好性、可重用性和互操作性等因素。

🔄 数据工程生命周期包括数据摄取、转换、分析和机器学习等关键阶段,这些阶段需要紧密集成和协调。

🔒 数据安全、数据管理、DataOps、数据架构、编排和软件工程是贯穿整个生命周期的核心原则,不可或缺。

🚫 避免重复技术,将新技术集成到工程生命周期中,而不是创建新的隔离工作,以实现可持续的架构。

In today’s landscape, a data engineer is pivotal in overseeing the entire data engineering process. This involves gathering data from diverse sources and ensuring its availability for downstream applications. A deep understanding of the various stages in the data engineering lifecycle is essential. Additionally, a data engineer must possess the skill to evaluate data tools effectively, considering various aspects such as cost, speed, flexibility, scalability, user-friendliness, reusability, and interoperability.


Illustration of the data engineering lifecycle, from Fundamentals of Data Engineering

# Data Lifecylce

Another perspective can be seen in this Tweet where we analyse the Data Lifecychttps://www.ssp.sh/brain/data-engineering-data-flow-problems.png-flow-problems.png">

Read more on the data lifecycle in my book chapter about Challenges in Data Engineering.

Or related insights, see Data Engineering Architecture, such as the one from A16z.

Case Study: Open Data Stack Project

The Open Data Stack project exemplifies practical application, incorporating key lifecycle components like ingestion, transformation, analytics, and machine learning.

Further reading: The Evolution of The Data Engineer: Past, Present & Future.

These are the foundational elements of the lifecycle, pervasive throughout its various stages: security, data management, DataOps, data architecture, orchestration, and software engineering. The lifecycle cannot function effectively without these integral undercurrents.

Here are the above core principles of the engineering lifecycle, added with my own thoughts or features.

# Data Lifecycle

Related is the Data Lifecycle and Data Canvas.

# Let’s not repeat ourselves

With the hype cycle, we have a tendency to repeat ourselves with ever-new tech.

But let’s integrate new data tech into the engineering lifecycle instead of creating new siloed work.

The picture below illustrates, with the chasm hype cycle, the engineering behavior is to skip fundamentals, adopting ever-new tools instead of sustaining architectural patterns that work.

graph LR    subgraph "Engineering Behavior"        P1[Problem Discovery] -->|"Search for Quick Solution"| P2[Build/Adopt New Tool]        P2 -->|"Technical Debt Accumulates"| P3[Maintenance Challenges]        P3 -->|"Research Existing Solutions"| P4[Discovery of Established Patterns]        P4 -->|"Integration & Optimization"| P5[Sustainable Architecture]                P6[NIH Syndrome] -.->|"Not Invented Here"| P2        P7[Learning Curve Avoidance] -.->|"Skip Fundamentals"| P2    end            classDef vectorTech fill:#e1f5fe,stroke:#0277bd,stroke-width:1px    classDef engBehavior fill:#e8f5e9,stroke:#2e7d32,stroke-width:1px    classDef convergent fill:#fff3e0,stroke:#e65100,stroke-width:1px    classDef connection stroke:#999,stroke-width:1px,stroke-dasharray: 5 5    classDef convergentLine stroke:#e65100,stroke-width:2px        class V2,V3,V6 vectorTech    class P1,P2,P3,P4,P5,P6,P7 engBehavior    class C1,C2,C3,C4,C5,C6 convergent

Origin:
References:
Created 2022-12-21

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据工程师 数据生命周期 数据工程 数据工具评估 核心原则
相关文章