Second Brain: Crafted, Curated, Connected, Compounded on 10月02日 21:05
SQL在编程和数据管理中的重要性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

SQL是一种领域特定语言,在编程中至关重要,尤其是在管理关系数据库管理系统中的数据或关系数据流系统中的流处理。它与Jinja模板在dbt中紧密相关。除了商业智能工具,越来越多的数据工程工具现在专门集成了SQL。这进一步在“使用GraphQL构建分析API——数据工程的新水平”中进行了探讨。SQL是数据的语言,是进行任何数据工作的基本技能。如果你使用一个没有直接SQL接口的REST API,了解SQL仍然有益,因为REST服务几乎肯定会在你的REST请求的基础上对数据库执行SQL查询。如果你了解连接和过滤器的工作原理,你可以向请求添加一个关键的过滤器,或者将请求分成两部分,因为你知道背后可能有一个重的连接,这样你就可以避免它。另一方面,Python是数据工程师的工具语言。它用于将数据工程师的不同步骤粘合在一起。它是终极工具语言。从REST API或网络拉取数据,清理一些不充分的数据,并将其存储在Postgres中。你如何以安全、有序的方式做到这一点?对了,用Python。在旧时代,我们使用存储过程。如果你生活在像SAP、Oracle或Microsoft这样的大型供应商的一个生态系统中,你可以将你的粘合代码添加到数据库代码中,使用PL/SQL或T-SQL。但如果你使用任何外部工具,比如REST API,围绕Python的工具如此庞大和广泛,你几乎肯定会通过使用Python使你的生活更轻松。

🔍 SQL是一种领域特定语言,在编程中至关重要,尤其是在管理关系数据库管理系统中的数据或关系数据流系统中的流处理。它与Jinja模板在dbt中紧密相关。

📈 除了商业智能工具,越来越多的数据工程工具现在专门集成了SQL。这进一步在“使用GraphQL构建分析API——数据工程的新水平”中进行了探讨。

🔧 SQL是数据的语言,是进行任何数据工作的基本技能。如果你使用一个没有直接SQL接口的REST API,了解SQL仍然有益,因为REST服务几乎肯定会在你的REST请求的基础上对数据库执行SQL查询。

🔗 如果你了解连接和过滤器的工作原理,你可以向请求添加一个关键的过滤器,或者将请求分成两部分,因为你知道背后可能有一个重的连接,这样你就可以避免它。

🐍 另一方面,Python是数据工程师的工具语言。它用于将数据工程师的不同步骤粘合在一起。它是终极工具语言。从REST API或网络拉取数据,清理一些不充分的数据,并将其存储在Postgres中。你如何以安全、有序的方式做到这一点?对了,用Python。

SQL, a domain-specific language, is pivotal in programming, especially for managing data in relational database management systems or stream processing in relational data stream systems.

It’s closely tied to Jinja Template within dbt. Beyond Business Intelligence tools, a growing number of data engineering tools are now exclusively integrating with SQL. This is further explored in Building an Analytics API with GraphQL - The Next Level of Data Engineering.

For additional insights, refer to Components of an Analytics API.

# SQL and Databases

SQL is the language of data. SQL is a fundamental skill for doing any data work. There’s almost nothing you do without needing SQL. If you work with a REST API with no direct SQL interface, it’s still beneficial to know, as the REST service will most certainly perform a SQL query against the database based on your REST request.

If you understand how joins and filters work, you can add a key filter to the request or split up a request into two, as you know it might be a heavy join behind, and that way you avoid it.

On the other hand, Python is a data engineer’s tooling language. It’s used to glue the different steps of a data engineer together. It’s the ultimate toolkit language. Pulling data from a REST API or web, cleaning out some insufficient data, and storing it in Postgres. How would you do that in a safe, ordered fashion? Right, Python.

In the old days, we used stored procedures. If you live in one ecosystem of large vendors like SAP, Oracle, or Microsoft, you can add your glue code into the database code with PL/SQL or T-SQL. But if you work with any outside tool, like a REST API, the tooling around Python is so massive and extensive that you will most certainly make your life easier by using Python.

# History

SQL was invented in the 1970s based on the Relational Data Model. It was initially known as the structured English query language (SEQUEL). The term was later shortened to SQL.

Oracle, formerly known as Relational Software, became the first vendor to offer a commercial SQL relational database management system.

“History of SQL”

SQL -> Data Mart -> Materialized View -> BI Report -> Traditional OLAP -> BI Dashboard -> Modern OLAP -> dbt tables -> One Big/Wide/Super Table -> Semantic Layer -> Natural Language Queries

# SQL vs. NoSQL or Big Data

Since then, SQL has come to dominate the landscape. (“Never bet against SQL,” I like to say.) Most users have moved to cloud SQL services (BigQuery, Snowflake) because convenience is more important than the flexibility and raw power of Apache Hadoop or Spark. SQL now handles workloads—streaming, data transformation, documents, geospatial, machine learning—previously handled by non-SQL systems. But there are two areas where SQL has not yet prevailedBusiness Intelligence and data-intensive computing—and I want to investigate whether the solution is SQL or something else. Julian Hyde on Into the Wilderness

# ANSI SQL

What is ANSI SQL?

# SQL Syntax

# Declarative

SQL is declarative.

# Extending SQL for analytics

SQL is the origin of data, and it has been extended over the years. We have geospatial capabilities, window functions, and other features throughout the year. Why not add analytics semantics, too?

See Extending SQL for analytics.

# Different parts of an SQL-Statement

From parsing to compiling and executing. Possible with SDF and SQLGlot:

source

# The Future of SQL

Julian Hyde in 2025-06-04 at data council More Than Query Future Directions of Query Languages, from SQL to Morel - YouTube

# Patterns of SQL

From Matthias Broecheler on LinkedIn:

Everything gets pulled back in.

# Resources


Origin:
References:
Created 2022-08-08

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SQL 数据管理 编程 关系数据库 数据工程 商业智能
相关文章