Second Brain: Crafted, Curated, Connected, Compounded on 10月02日
Postgres CDC:实现数据库变更实时捕获与同步
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Change Data Capture (CDC) 是一种现代数据架构的关键技术,它能够捕获数据库中的变更信息并实时流式传输。在 PostgreSQL 中,CDC 可通过多种方式实现,例如利用 Write-Ahead Logging (WAL) 的逻辑解码功能,或结合触发器、查询/时间戳列、逻辑复制、事务日志以及表差异化等方法。CDC 的主要目的是为了实现数据集成和复制,将数据库变更同步到数据仓库、缓存或搜索引擎,从而支持实时数据分析、报告和微服务架构。与 WAL 作为内部保障数据一致性的机制不同,CDC 是外部用于数据集成和流式传输的机制。

💡 **CDC 的核心功能与目的:** CDC 是一种用于捕获数据库中数据变更(插入、更新、删除)并将其实时流式传输到其他系统的机制。它并非数据库核心的持久化功能,而是现代数据架构中实现数据集成、复制、实时数据仓库、数据分析和微服务等场景的关键技术。

🚀 **PostgreSQL 中 CDC 的实现方式:** 在 PostgreSQL 中实现 CDC 有多种途径,包括利用 Write-Ahead Logging (WAL) 的逻辑解码功能(如 PostgreSQL 的逻辑复制),通过数据库触发器,使用查询或时间戳列,直接利用逻辑复制,或者通过解析事务日志和表差异化等方法。选择哪种方法取决于具体需求和对性能的影响。

🔗 **CDC 与 WAL 的关系:** Write-Ahead Logging (WAL) 是 PostgreSQL 内部用于保证数据一致性和持久性的机制,尤其在数据恢复时至关重要。而 Change Data Capture (CDC) 则是外部用于数据集成和复制的机制。CDC 可以利用 WAL(例如 PostgreSQL 的逻辑解码)来捕获变更,但两者的核心目的和实现方式是不同的。

🛠️ **Postgres CDC 的实际应用场景:** 组织通常会将关系型数据库(如 PostgreSQL)用于事务处理,并将数据同步到单独的数据仓库进行分析和报告。CDC 能够解决传统基于时间的批处理同步方式在处理海量数据时可能遇到的延迟、数据不准确以及对源系统性能影响等问题,实现持续、准确、近乎实时的数据库同步。

    Primary Purpose: It enables capturing and streaming changes made to the database. It’s used for integrating databases with other systems, such as replicating data to a data warehouse or syncing it with a cache or a search index.Mechanism: CDC can be implemented using various techniques, including database triggers and polling, or by tapping into the database’s replication capabilities, such as using the WAL in PostgreSQL. It captures the “what” of the change (insert, update, delete) and the “how” (the actual data change).Usage in Databases: It’s not a core database functionality for ensuring consistency or durability but is essential for modern data architectures that require real-time data integration and streaming.

See a practical example of Change Data Capture (CDC) - Real-Estate Project.

Connection to Write-Ahead Logging (WAL)
In essence, WAL is an internal mechanism used by databases to guarantee consistency and durability, especially for recovery purposes. CDC, on the other hand, is an external mechanism used for Data Integration and replication.

They might intersect in the sense that CDC can utilize WAL (as in the case of PostgreSQL’s logical decoding feature) to capture changes, but their core purposes and implementations are different.

Open Source:

Closed Source:

# CDC with Postgres

See also A Guide to Logical Replication and CDC in PostgreSQL

# Implementing

For implementing CDC in PostgreSQL, you would typically use a replication slot along with a logical decoding output plugin. There are various open-source and commercial tools available that leverage this feature to provide robust CDC capabilities, such as Debezium, pglogical, and others.

These tools can stream database changes in real-time and integrate with various data pipelines and ETL processes, making them invaluable in modern data architectures, especially in scenarios involving real-time data warehousing, analytics, and microservices.

# Change Captures in Postgres

Usually, organizations will have a relational database like Postgres to deal with transactional workloads and a separate data warehouse where the data can be subjected to analytics and consolidated for reporting purposes. This means the huge volumes of data pouring into the Postgres DBs need to be delivered to the data repository along with data changes as they happen.

Connecting PostgreSQL to other data stores often involves using data pipelines that rely on time-based batch processing (think of hourly or daily batch sync), so it is a challenge to obtain data for time-critical reporting

For modern enterprises that routinely deal with huge petabytes of data, the batch processing approach can prove problematic, impact source systems and lead to errors and inaccurate results. It may fail to capture up-to-date data, causing synchronization issues that hinder accurate data-driven decision making. This is where Postgres CDC can help – to sync data between databases either continually, or at prescribed intervals. Change Data Capture (CDC) is a modern approach that can be applied in the Postgres database for achieving continuous, accurate and often real-time data sync. Postgres to SQL Server with BryteFlow

# Different Alternatives to Implement Postgres CDC

CDC is a way to track and use data that has changed in a database. PostgreSQL has built-in CDC functionality. The choice of method depends on your application’s requirements and how much impact you can tolerate on performance. Let us discuss setting up Change Data Capture (CDC) in PostgreSQL using six different methods.

    CDC with Write-Ahead Logging (WAL)CDC in Postgres with TriggersCDC in Postgres with Queries or Timestamp ColumnCDC in Postgres with Logical ReplicationCDC in Postgres with Transactional LogsCDC in Postgres with Table Differencing

Origin: Streaming
References:
Created 2022-08-16

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Change Data Capture CDC PostgreSQL 数据库同步 实时数据 数据集成 WAL 逻辑复制 数据仓库
相关文章