cs.AI updates on arXiv.org 10月02日
ViLBias:多模态新闻偏见检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ViLBias,一个用于检测和推理多模态新闻偏见的VQA风格基准和框架。通过大量数据集,验证了图像和文本结合能提高检测准确率,同时LLMs/VLMs在捕捉微妙框架和文本-图像不一致性方面优于SLMs。参数高效方法能恢复97-99%的全量微调性能。

arXiv:2412.17052v4 Announce Type: replace Abstract: Detecting bias in multimodal news requires models that reason over text--image pairs, not just classify text. In response, we present ViLBias, a VQA-style benchmark and framework for detecting and reasoning about bias in multimodal news. The dataset comprises 40,945 text--image pairs from diverse outlets, each annotated with a bias label and concise rationale using a two-stage LLM-as-annotator pipeline with hierarchical majority voting and human-in-the-loop validation. We evaluate Small Language Models (SLMs), Large Language Models (LLMs), and Vision--Language Models (VLMs) across closed-ended classification and open-ended reasoning (oVQA), and compare parameter-efficient tuning strategies. Results show that incorporating images alongside text improves detection accuracy by 3--5\%, and that LLMs/VLMs better capture subtle framing and text--image inconsistencies than SLMs. Parameter-efficient methods (LoRA/QLoRA/Adapters) recover 97--99\% of full fine-tuning performance with $<5\%$ trainable parameters. For oVQA, reasoning accuracy spans 52--79\% and faithfulness 68--89\%, both improved by instruction tuning; closed accuracy correlates strongly with reasoning ($r = 0.91$). ViLBias offers a scalable benchmark and strong baselines for multimodal bias detection and rationale quality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态新闻 偏见检测 VQA框架 语言模型 图像文本结合
相关文章