cs.AI updates on arXiv.org 10月02日
JCDI模型解决参数估计非唯一性问题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为JCDI的新型参数估计框架,通过联合条件扩散模型解决参数估计的非唯一性问题,并在动态电力系统参数化中表现出色。

arXiv:2411.10431v2 Announce Type: replace Abstract: Parameter estimation, which represents a classical inverse problem, is often ill-posed as different parameter combinations can yield identical outputs. This non-uniqueness poses a critical barrier to accurate and unique identification. This work introduces a novel parameter estimation framework to address such limits: the Joint Conditional Diffusion Model-based Inverse Problem Solver (JCDI). By leveraging the stochasticity of diffusion models, JCDI produces possible solutions revealing underlying distributions. Joint conditioning on multiple observations further narrows the posterior distributions of non-identifiable parameters. For the challenging task in dynamic power systems: composite load model parameterization, JCDI achieves a 58.6% reduction in parameter estimation error compared to the single-condition model. It also accurately replicates system's dynamic responses under various electrical faults, with root mean square errors below 4*10^(-3), outperforming existing deep-reinforcement-learning and supervised learning approaches. Given its data-driven nature, JCDI provides a universal framework for parameter estimation while effectively mitigating the non-uniqueness challenge across scientific domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

参数估计 JCDI模型 扩散模型 动态电力系统 参数非唯一性
相关文章