cs.AI updates on arXiv.org 10月02日
多目标优化:提升情境学习示例选择
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将情境学习中的示例选择视为一个多目标优化问题,结合预测准确性和模型校准误差最小化。采用COM-BOM算法寻找最佳折衷方案,实验表明该方法在多个任务中优于基线。

arXiv:2510.01178v1 Announce Type: cross Abstract: Selecting an optimal set of exemplars is critical for good performance of in-context learning. However, prior exemplar search methods narrowly optimize for predictive accuracy, critically neglecting model calibration--a key determinant of trustworthiness and safe deployment. In this paper, we formulate exemplar selection as a multi-objective optimization problem, explicitly targeting both the maximization of predictive accuracy and the minimization of expected calibration error. We solve this problem with a sample-efficient Combinatorial Bayesian Optimization algorithm (COM-BOM) to find the Pareto front that optimally trades off the two objectives of accuracy and calibration. We evaluate COM-BOM on multiple tasks from unsaturated MMLU-Pro benchmark and find that COM-BOM beats or matches the baselines at jointly optimizing the two objectives, while requiring a minimal number of LLM API calls.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

情境学习 示例选择 多目标优化 模型校准 COM-BOM算法
相关文章