cs.AI updates on arXiv.org 10月02日
TabINR:表格数据自动解码框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TabINR,一种基于隐式神经网络表示的自动解码框架,用于处理表格数据中的缺失值问题。该框架通过学习行和特征嵌入,有效处理离散结构,实现自适应补全,并在多个真实数据集上取得优异的补全效果。

arXiv:2510.01136v1 Announce Type: cross Abstract: Tabular data builds the basis for a wide range of applications, yet real-world datasets are frequently incomplete due to collection errors, privacy restrictions, or sensor failures. As missing values degrade the performance or hinder the applicability of downstream models, and while simple imputing strategies tend to introduce bias or distort the underlying data distribution, we require imputers that provide high-quality imputations, are robust across dataset sizes and yield fast inference. We therefore introduce TabINR, an auto-decoder based Implicit Neural Representation (INR) framework that models tables as neural functions. Building on recent advances in generalizable INRs, we introduce learnable row and feature embeddings that effectively deal with the discrete structure of tabular data and can be inferred from partial observations, enabling instance adaptive imputations without modifying the trained model. We evaluate our framework across a diverse range of twelve real-world datasets and multiple missingness mechanisms, demonstrating consistently strong imputation accuracy, mostly matching or outperforming classical (KNN, MICE, MissForest) and deep learning based models (GAIN, ReMasker), with the clearest gains on high-dimensional datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表格数据 自动解码 隐式神经网络 缺失值补全
相关文章