cs.AI updates on arXiv.org 10月02日
GEM:LLM环境模拟器助力智能体训练
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为GEM的开放源代码环境模拟器,旨在推动大型语言模型(LLM)的训练范式从静态数据集转向基于经验的学习。GEM为环境-智能体接口提供标准化框架,包括异步向量化执行和灵活的包装器,同时提供多样化的环境、集成工具和示例脚本,并支持多种RL训练框架。此外,GEM还提供了一套基于REINFORCE和ReBN的基线,以及PPO、GRPO和REINFORCE的算法设计基准测试。

arXiv:2510.01051v1 Announce Type: cross Abstract: The training paradigm for large language models (LLMs) is moving from static datasets to experience-based learning, where agents acquire skills via interacting with complex environments. To facilitate this transition we introduce GEM (General Experience Maker), an open-source environment simulator designed for the age of LLMs. Analogous to OpenAI-Gym for traditional reinforcement learning (RL), GEM provides a standardized framework for the environment-agent interface, including asynchronous vectorized execution for high throughput, and flexible wrappers for easy extensibility. GEM also features a diverse suite of environments, robust integrated tools, and single-file example scripts demonstrating using GEM with five popular RL training frameworks. Along with this, we also provide a set of baselines across 24 environments using REINFORCE with Return Batch Normalization (ReBN), which -- unlike GRPO -- is compatible with the full RL setting of dense per-turn rewards and offers better credit assignment. We further conduct apple-to-apple benchmarking of PPO, GRPO and REINFORCE in both single- and multi-turn settings using GEM to shed light on the algorithmic designs. Lastly, GEM also functions as a convenient evaluation toolkit besides a training environment. We hope this framework can help accelerate future agentic LLM research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 环境模拟器 智能体训练 强化学习 REINFORCE
相关文章