cs.AI updates on arXiv.org 10月02日
PhoPile:RAG增强物理推理的多模态数据集
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PhoPile,一个专门为奥林匹克物理竞赛设计的多模态数据集,旨在通过检索增强技术提升基础模型在物理推理方面的表现。研究结果表明,结合检索与物理语料库可以提升模型性能,并揭示了检索增强物理推理领域的研究挑战。

arXiv:2510.00919v1 Announce Type: cross Abstract: Retrieval-augmented generation (RAG) with foundation models has achieved strong performance across diverse tasks, but their capacity for expert-level reasoning-such as solving Olympiad-level physics problems-remains largely unexplored. Inspired by the way students prepare for competitions by reviewing past problems, we investigate the potential of RAG to enhance physics reasoning in foundation models. We introduce PhoPile, a high-quality multimodal dataset specifically designed for Olympiad-level physics, enabling systematic study of retrieval-based reasoning. PhoPile includes diagrams, graphs, and equations, capturing the inherently multimodal nature of physics problem solving. Using PhoPile, we benchmark RAG-augmented foundation models, covering both large language models (LLMs) and large multimodal models (LMMs) with multiple retrievers. Our results demonstrate that integrating retrieval with physics corpora can improve model performance, while also highlighting challenges that motivate further research in retrieval-augmented physics reasoning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 物理推理 多模态数据集 基础模型 检索增强
相关文章