cs.AI updates on arXiv.org 10月02日
跨提示基础模型解决黑盒时间序列域适应问题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对仅提供源模型API的黑盒域适应问题,提出了一种跨提示基础模型(CPFM)以解决黑盒时间序列域适应(BBTSDA)问题。CPFM采用双分支网络结构,每个分支配备独特提示以捕捉数据分布的不同特征,并通过时间序列基础模型克服时空动态,实验结果表明CPFM在三个不同应用领域的时间序列数据集上取得了显著优势。

arXiv:2510.00487v1 Announce Type: cross Abstract: The black-box domain adaptation (BBDA) topic is developed to address the privacy and security issues where only an application programming interface (API) of the source model is available for domain adaptations. Although the BBDA topic has attracted growing research attentions, existing works mostly target the vision applications and are not directly applicable to the time-series applications possessing unique spatio-temporal characteristics. In addition, none of existing approaches have explored the strength of foundation model for black box time-series domain adaptation (BBTSDA). This paper proposes a concept of Cross-Prompt Foundation Model (CPFM) for the BBTSDA problems. CPFM is constructed under a dual branch network structure where each branch is equipped with a unique prompt to capture different characteristics of data distributions. In the domain adaptation phase, the reconstruction learning phase in the prompt and input levels is developed. All of which are built upon a time-series foundation model to overcome the spatio-temporal dynamic. Our rigorous experiments substantiate the advantage of CPFM achieving improved results with noticeable margins from its competitors in three time-series datasets of different application domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

黑盒域适应 时间序列 基础模型 跨提示 域适应
相关文章