cs.AI updates on arXiv.org 10月02日 12:17
ExpDWT-VAE:卫星图像中潜在空间提升新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用离散小波变换(DWT)增强变分自编码器(VAE)的潜在空间表示,旨在提升卫星图像处理中的潜在扩散模型(LDM)性能。

arXiv:2510.00376v1 Announce Type: cross Abstract: Latent Diffusion Models (LDM), a subclass of diffusion models, mitigate the computational complexity of pixel-space diffusion by operating within a compressed latent space constructed by Variational Autoencoders (VAEs), demonstrating significant advantages in Remote Sensing (RS) applications. Though numerous studies enhancing LDMs have been conducted, investigations explicitly targeting improvements within the intrinsic latent space remain scarce. This paper proposes an innovative perspective, utilizing the Discrete Wavelet Transform (DWT) to enhance the VAE's latent space representation, designed for satellite imagery. The proposed method, ExpDWT-VAE, introduces dual branches: one processes spatial domain input through convolutional operations, while the other extracts and processes frequency-domain features via 2D Haar wavelet decomposition, convolutional operation, and inverse DWT reconstruction. These branches merge to create an integrated spatial-frequency representation, further refined through convolutional and diagonal Gaussian mapping into a robust latent representation. We utilize a new satellite imagery dataset housed by the TerraFly mapping system to validate our method. Experimental results across several performance metrics highlight the efficacy of the proposed method at enhancing latent space representation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

潜在扩散模型 变分自编码器 卫星图像 离散小波变换 潜在空间
相关文章