cs.AI updates on arXiv.org 10月02日
o-mega:优化语义匹配领域可解释AI方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出o-mega,一种用于自动识别语义匹配领域最有效可解释AI方法和其配置的超参数优化工具,旨在解决模型透明度和可信度问题,提升自动化事实核查系统的透明度。

arXiv:2510.00288v1 Announce Type: cross Abstract: The proliferation of transformer-based language models has revolutionized NLP domain while simultaneously introduced significant challenges regarding model transparency and trustworthiness. The complexity of achieving explainable systems in this domain is evidenced by the extensive array of explanation methods and evaluation metrics developed by researchers. To address the challenge of selecting optimal explainability approaches, we present \textbf{\texttt{o-mega}}, a hyperparameter optimization tool designed to automatically identify the most effective explainable AI methods and their configurations within the semantic matching domain. We evaluate o-mega on a post-claim matching pipeline using a curated dataset of social media posts paired with refuting claims. Our tool systematically explores different explainable methods and their hyperparameters, demonstrating improved transparency in automated fact-checking systems. As a result, such automated optimization of explanation methods can significantly enhance the interpretability of claim-matching models in critical applications such as misinformation detection, contributing to more trustworthy and transparent AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可解释AI 语义匹配 超参数优化 事实核查 透明度
相关文章