cs.AI updates on arXiv.org 10月02日
开源RAG流程助力ECG-LM自然语言生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出首个开源RAG流程,用于ECG-LM的自然语言生成,通过实验验证其在三个公共数据集上的有效性,并探讨了关键设计考虑。

arXiv:2510.00261v1 Announce Type: cross Abstract: Interest in generative Electrocardiogram-Language Models (ELMs) is growing, as they can produce textual responses conditioned on ECG signals and textual queries. Unlike traditional classifiers that output label probabilities, ELMs are more versatile, supporting domain-specific tasks (e.g., waveform analysis, diagnosis, prognosis) as well as general tasks (e.g., open-ended questions, dialogue). Retrieval-Augmented Generation (RAG), widely used in Large Language Models (LLMs) to ground LLM outputs in retrieved knowledge, helps reduce hallucinations and improve natural language generation (NLG). However, despite its promise, no open-source implementation or systematic study of RAG pipeline design for ELMs currently exists. To address this gap, we present the first open-source RAG pipeline for ELMs, along with baselines and ablation studies for NLG. Experiments on three public datasets show that ELMs with RAG consistently improves performance over non-RAG baselines and highlights key ELM design considerations. Our code is available at: https://github.com/willxxy/ECG-Bench.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ECG-LM RAG 自然语言生成 数据集 性能提升
相关文章