cs.AI updates on arXiv.org 10月02日
解决VAE先验问题:能量基变分先验模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于能量模型的变分先验(EVaLP),用于解决变分自编码器(VAE)的先验空洞问题,提高图像生成质量与采样效率。

arXiv:2510.00260v1 Announce Type: cross Abstract: Variational Auto-Encoders (VAEs) are known to generate blurry and inconsistent samples. One reason for this is the "prior hole" problem. A prior hole refers to regions that have high probability under the VAE's prior but low probability under the VAE's posterior. This means that during data generation, high probability samples from the prior could have low probability under the posterior, resulting in poor quality data. Ideally, a prior needs to be flexible enough to match the posterior while retaining the ability to generate samples fast. Generative models continue to address this tradeoff. This paper proposes to model the prior as an energy-based model (EBM). While EBMs are known to offer the flexibility to match posteriors (and also improving the ELBO), they are traditionally slow in sample generation due to their dependency on MCMC methods. Our key idea is to bring a variational approach to tackle the normalization constant in EBMs, thus bypassing the expensive MCMC approaches. The variational form can be approximated with a sampler network, and we show that such an approach to training priors can be formulated as an alternating optimization problem. Moreover, the same sampler reduces to an implicit variational prior during generation, providing efficient and fast sampling. We compare our Energy-based Variational Latent Prior (EVaLP) method to multiple SOTA baselines and show improvements in image generation quality, reduced prior holes, and better sampling efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

变分自编码器 先验空洞问题 能量基模型 图像生成 采样效率
相关文章