cs.AI updates on arXiv.org 10月02日
AstroMMBench:首个评估天文图像理解MLLMs的基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了首个专门用于评估天文图像理解的多模态大型语言模型(MLLMs)基准AstroMMBench。通过分析25个不同类型的MLLMs,该基准揭示了不同模型在不同天文领域的表现差异,为MLLMs在科学应用中的发展提供了指导。

arXiv:2510.00063v1 Announce Type: cross Abstract: Astronomical image interpretation presents a significant challenge for applying multimodal large language models (MLLMs) to specialized scientific tasks. Existing benchmarks focus on general multimodal capabilities but fail to capture the complexity of astronomical data. To bridge this gap, we introduce AstroMMBench, the first comprehensive benchmark designed to evaluate MLLMs in astronomical image understanding. AstroMMBench comprises 621 multiple-choice questions across six astrophysical subfields, curated and reviewed by 15 domain experts for quality and relevance. We conducted an extensive evaluation of 25 diverse MLLMs, including 22 open-source and 3 closed-source models, using AstroMMBench. The results show that Ovis2-34B achieved the highest overall accuracy (70.5%), demonstrating leading capabilities even compared to strong closed-source models. Performance showed variations across the six astrophysical subfields, proving particularly challenging in domains like cosmology and high-energy astrophysics, while models performed relatively better in others, such as instrumentation and solar astrophysics. These findings underscore the vital role of domain-specific benchmarks like AstroMMBench in critically evaluating MLLM performance and guiding their targeted development for scientific applications. AstroMMBench provides a foundational resource and a dynamic tool to catalyze advancements at the intersection of AI and astronomy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

天文图像理解 MLLMs AstroMMBench 模型评估 科学应用
相关文章