cs.AI updates on arXiv.org 10月02日
CNN压缩:新型低秩分解框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种适用于卷积神经网络压缩的低秩分解框架,包括基于特征图相似性的秩选择策略、一键式微调过程,以及不同层类型的LRF技术集成,在保持低精度损失的情况下显著提高了压缩效率。

arXiv:2510.00062v1 Announce Type: cross Abstract: Low-Rank Factorization (LRF) is a widely adopted technique for compressing deep neural networks (DNNs). However, it faces several challenges, including optimal rank selection, a vast design space, long fine-tuning times, and limited compatibility with different layer types and decomposition methods. This paper presents an end-to-end Design Space Exploration (DSE) methodology and framework for compressing convolutional neural networks (CNNs) that addresses all these issues. We introduce a novel rank selection strategy based on feature map similarity, which captures non-linear interactions between layer outputs more effectively than traditional weight-based approaches. Unlike prior works, our method uses a one-shot fine-tuning process, significantly reducing the overall fine-tuning time. The proposed framework is fully compatible with all types of convolutional (Conv) and fully connected (FC) layers. To further improve compression, the framework integrates three different LRF techniques for Conv layers and three for FC layers, applying them selectively on a per-layer basis. We demonstrate that combining multiple LRF methods within a single model yields better compression results than using a single method uniformly across all layers. Finally, we provide a comprehensive evaluation and comparison of the six LRF techniques, offering practical insights into their effectiveness across different scenarios. The proposed work is integrated into TensorFlow 2.x, ensuring compatibility with widely used deep learning workflows. Experimental results on 14 CNN models across eight datasets demonstrate that the proposed methodology achieves substantial compression with minimal accuracy loss, outperforming several state-of-the-art techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

卷积神经网络 低秩分解 压缩 微调
相关文章