cs.AI updates on arXiv.org 10月02日 12:16
光谱-空间融合提升超分辨率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为SSUF的新型模块,结合光谱解混与特征提取,用于提升超分辨率图像的空间和光谱质量,并通过定制损失函数优化模型,实验表明该方法性能优异。

arXiv:2510.00033v1 Announce Type: cross Abstract: Hyperspectral single image super-resolution (SISR) is a challenging task due to the difficulty of restoring fine spatial details while preserving spectral fidelity across a wide range of wavelengths, which limits the performance of conventional deep learning models. To address this challenge, we introduce Spectral-Spatial Unmixing Fusion (SSUF), a novel module that can be seamlessly integrated into standard 2D convolutional architectures to enhance both spatial resolution and spectral integrity. The SSUF combines spectral unmixing with spectral--spatial feature extraction and guides a ResNet-based convolutional neural network for improved reconstruction. In addition, we propose a custom Spatial-Spectral Gradient Loss function that integrates mean squared error with spatial and spectral gradient components, encouraging accurate reconstruction of both spatial and spectral features. Experiments on three public remote sensing hyperspectral datasets demonstrate that the proposed hybrid deep learning model achieves competitive performance while reducing model complexity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

超分辨率 光谱解混 深度学习 遥感
相关文章