cs.AI updates on arXiv.org 10月02日
脑电信号与多模态语言模型结合分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用多模态大语言模型分析脑电信号,解决脑电信号编码认知过程和内在神经状态不匹配的问题,并通过WaveMind-Instruct-338k数据集实现跨任务指令调整,提升模型在神经科学研究和通用脑电模型开发中的应用。

arXiv:2510.00032v1 Announce Type: cross Abstract: Electroencephalography (EEG) interpretation using multimodal large language models (MLLMs) offers a novel approach for analyzing brain signals. However, the complex nature of brain activity introduces critical challenges: EEG signals simultaneously encode both cognitive processes and intrinsic neural states, creating a mismatch in EEG paired-data modality that hinders effective cross-modal representation learning. Through a pivot investigation, we uncover complementary relationships between these modalities. Leveraging this insight, we propose mapping EEG signals and their corresponding modalities into a unified semantic space to achieve generalized interpretation. To fully enable conversational capabilities, we further introduce WaveMind-Instruct-338k, the first cross-task EEG dataset for instruction tuning. The resulting model demonstrates robust classification accuracy while supporting flexible, open-ended conversations across four downstream tasks, thereby offering valuable insights for both neuroscience research and the development of general-purpose EEG models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑电信号 多模态语言模型 神经科学 模型开发
相关文章