cs.AI updates on arXiv.org 10月02日
MARS:基于多通道自回归的音频生成框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MARS的音频生成框架,通过将频谱图视为多通道图像并应用通道复用技术,实现高效和可扩展的高保真音频生成。

arXiv:2509.26007v1 Announce Type: cross Abstract: Research on audio generation has progressively shifted from waveform-based approaches to spectrogram-based methods, which more naturally capture harmonic and temporal structures. At the same time, advances in image synthesis have shown that autoregression across scales, rather than tokens, improves coherence and detail. Building on these ideas, we introduce MARS (Multi-channel AutoRegression on Spectrograms), a framework that treats spectrograms as multi-channel images and employs channel multiplexing (CMX), a reshaping technique that lowers height and width without discarding information. A shared tokenizer provides consistent discrete representations across scales, enabling a transformer-based autoregressor to refine spectrograms from coarse to fine resolutions efficiently. Experiments on a large-scale dataset demonstrate that MARS performs comparably or better than state-of-the-art baselines across multiple evaluation metrics, establishing an efficient and scalable paradigm for high-fidelity audio generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频生成 频谱图 多通道自回归
相关文章