cs.AI updates on arXiv.org 10月02日
LLM赋能供应链风险分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于大型语言模型(LLM)的供应链风险分析框架,通过利用网络与知识图谱之间的内在二重性,实现高效的风险路径提取和实时风险叙述生成。

arXiv:2510.01115v1 Announce Type: new Abstract: Large Language Models (LLMs) struggle with the complex, multi-modal, and network-native data underlying financial risk. Standard Retrieval-Augmented Generation (RAG) oversimplifies relationships, while specialist models are costly and static. We address this gap with an LLM-centric agent framework for supply chain risk analysis. Our core contribution is to exploit the inherent duality between networks and knowledge graphs (KG). We treat the supply chain network as a KG, allowing us to use structural network science principles for retrieval. A graph traverser, guided by network centrality scores, efficiently extracts the most economically salient risk paths. An agentic architecture orchestrates this graph retrieval alongside data from numerical factor tables and news streams. Crucially, it employs novel ``context shells'' -- descriptive templates that embed raw figures in natural language -- to make quantitative data fully intelligible to the LLM. This lightweight approach enables the model to generate concise, explainable, and context-rich risk narratives in real-time without costly fine-tuning or a dedicated graph database.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 供应链风险分析 知识图谱 网络科学
相关文章