cs.AI updates on arXiv.org 10月02日
FusionAdapter:提升多模态知识图谱关系学习性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FusionAdapter,用于多模态知识图谱中的少样本关系学习。通过引入适配模块和融合策略,FusionAdapter有效整合多模态信息,提高对新型关系的泛化能力,在基准数据集上表现出优越性能。

arXiv:2510.00894v1 Announce Type: new Abstract: Multimodal Knowledge Graphs (MMKGs) incorporate various modalities, including text and images, to enhance entity and relation representations. Notably, different modalities for the same entity often present complementary and diverse information. However, existing MMKG methods primarily align modalities into a shared space, which tends to overlook the distinct contributions of specific modalities, limiting their performance particularly in low-resource settings. To address this challenge, we propose FusionAdapter for the learning of few-shot relationships (FSRL) in MMKG. FusionAdapter introduces (1) an adapter module that enables efficient adaptation of each modality to unseen relations and (2) a fusion strategy that integrates multimodal entity representations while preserving diverse modality-specific characteristics. By effectively adapting and fusing information from diverse modalities, FusionAdapter improves generalization to novel relations with minimal supervision. Extensive experiments on two benchmark MMKG datasets demonstrate that FusionAdapter achieves superior performance over state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态知识图谱 关系学习 FusionAdapter 少样本学习 知识图谱
相关文章