cs.AI updates on arXiv.org 10月02日
MAGIC-MASK:多智能体强化学习可解释性新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MAGIC-MASK框架,旨在解决多智能体强化学习中可解释性问题,通过数学基础和轻量级协作,提高学习效率和策略鲁棒性。

arXiv:2510.00274v1 Announce Type: new Abstract: Understanding the decision-making process of Deep Reinforcement Learning agents remains a key challenge for deploying these systems in safety-critical and multi-agent environments. While prior explainability methods like StateMask, have advanced the identification of critical states, they remain limited by computational cost, exploration coverage, and lack of adaptation to multi-agent settings. To overcome these limitations, we propose a mathematically grounded framework, MAGIC-MASK (Multi-Agent Guided Inter-agent Collaboration with Mask-Based Explainability for Reinforcement Learning), that extends perturbation-based explanation to Multi-Agent Reinforcement Learning. Our method integrates Proximal Policy Optimization, adaptive epsilon-greedy exploration, and lightweight inter-agent collaboration to share masked state information and peer experience. This collaboration enables each agent to perform saliency-guided masking and share reward-based insights with peers, reducing the time required for critical state discovery, improving explanation fidelity, and leading to faster and more robust learning. The core novelty of our approach lies in generalizing explainability from single-agent to multi-agent systems through a unified mathematical formalism built on trajectory perturbation, reward fidelity analysis, and Kullback-Leibler divergence regularization. This framework yields localized, interpretable explanations grounded in probabilistic modeling and multi-agent Markov decision processes. We validate our framework on both single-agent and multi-agent benchmarks, including a multi-agent highway driving environment and Google Research Football, demonstrating that MAGIC-MASK consistently outperforms state-of-the-art baselines in fidelity, learning efficiency, and policy robustness while offering interpretable and transferable explanations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体强化学习 可解释性 MAGIC-MASK 学习效率 策略鲁棒性
相关文章