cs.AI updates on arXiv.org 10月02日
自适应推理抑制:提升LRLMs效率新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出自适应推理抑制(ARS),一种不依赖训练的动态抑制冗余推理步骤的新方法,通过自适应置信度监控保持准确度,显著提升大型推理语言模型(LRLMs)的效率。

arXiv:2510.00071v1 Announce Type: new Abstract: Large Reasoning Language Models (LRLMs or LRMs) demonstrate remarkable capabilities in complex reasoning tasks, but suffer from significant computational inefficiencies due to overthinking phenomena. Existing efficient reasoning methods face the challenge of balancing reasoning quality with inference cost reduction. We propose \textbf{Adaptive Reasoning Suppression (ARS)}, a novel training-free approach that dynamically suppresses redundant reasoning steps while preserving accuracy through adaptive certainty monitoring. ARS introduces a multi-checkpoint certainty estimation mechanism with progressive suppression thresholds, achieving superior efficiency compared to static suppression methods. Our extensive evaluation across mathematical reasoning benchmarks using multiple model architectures demonstrates that ARS achieves up to 53%, 46.1%, and 57.9% in token, latency and energy reduction, while maintaining or improving accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LRLMs 推理效率 自适应抑制
相关文章