cs.AI updates on arXiv.org 10月01日
自然语言值轮廓建模个体差异
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出使用自然语言值轮廓描述个体,通过信息理论方法发现其能有效地压缩信息,并优于传统人口统计学分组,为个性化推荐和计算社会科学提供新方法。

arXiv:2503.15484v2 Announce Type: replace-cross Abstract: Modelling human variation in rating tasks is crucial for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using natural language value profiles -- descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model that estimates individual ratings from a rater representation. To measure the predictive information in a rater representation, we introduce an information-theoretic methodology and find that demonstrations contain the most information, followed by value profiles, then demographics. However, value profiles effectively compress the useful information from demonstrations (>70% information preservation) and offer advantages in terms of scrutability, interpretability, and steerability. Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder predictions change in line with semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自然语言处理 个性化推荐 计算社会科学 信息理论 个体差异
相关文章