cs.AI updates on arXiv.org 10月01日
TPE参数调优研究及优化实践
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文深入分析了树状Parzen估计器(TPE)在参数调优中的作用和影响,通过消融实验对不同基准数据集进行了研究,提出了推荐的TPE参数设置,并通过实践证明其性能提升。

arXiv:2304.11127v4 Announce Type: replace-cross Abstract: Recent scientific advances require complex experiment design, necessitating the meticulous tuning of many experiment parameters. Tree-structured Parzen estimator (TPE) is a widely used Bayesian optimization method in recent parameter tuning frameworks such as Hyperopt and Optuna. Despite its popularity, the roles of each control parameter in TPE and the algorithm intuition have not been discussed so far. The goal of this paper is to identify the roles of each control parameter and their impacts on parameter tuning based on the ablation studies using diverse benchmark datasets. The recommended setting concluded from the ablation studies is demonstrated to improve the performance of TPE. Our TPE implementation used in this paper is available at https://github.com/nabenabe0928/tpe/tree/single-opt.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

TPE 参数调优 消融实验 性能优化 数据集
相关文章