cs.AI updates on arXiv.org 10月01日
LLMs决策过程与人类判断差异及优化策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在决策过程中与人类判断的差异,并提出了三种优化策略:伦理框架提示、思维链推理和监督微调。研究发现,监督微调特别是结合人类解释能够显著提升模型决策能力,并实现了跨场景的人类决策模式迁移。

arXiv:2503.02976v2 Announce Type: replace Abstract: Large language models (LLMs), initially developed for generative AI, are now evolving into agentic AI systems, which make decisions in complex, real-world contexts. Unfortunately, while their generative capabilities are well-documented, their decision-making processes remain poorly understood. This is particularly evident when testing targeted decision-making: for instance, how models handle exceptions, a critical and challenging aspect of decision-making made relevant by the inherent incompleteness of contracts. Here we demonstrate that LLMs, even ones that excel at reasoning, deviate significantly from human judgments because they adhere strictly to policies, even when such adherence is impractical, suboptimal, or even counterproductive. We then evaluate three approaches to tuning AI agents to handle exceptions: ethical framework prompting, chain-of-thought reasoning, and supervised fine-tuning. We find that while ethical framework prompting fails and chain-of-thought prompting provides only slight improvements, supervised fine-tuning - specifically with human explanations - yields markedly better results. Surprisingly, in our experiments, supervised fine-tuning even enabled models to generalize human-like decision-making to novel scenarios, demonstrating transfer learning of human-aligned decision-making across contexts. Furthermore, fine-tuning with explanations, not just labels, was critical for alignment, suggesting that aligning LLMs with human judgment requires explicit training on how decisions are made, not just which decisions are made. These findings highlight the need to address LLMs' shortcomings in handling exceptions in order to guide the development of agentic AI toward models that can effectively align with human judgment and simultaneously adapt to novel contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 决策过程 优化策略 人类判断 监督微调
相关文章