cs.AI updates on arXiv.org 10月01日
NGT:低数据域下轻量级模仿学习新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Noise-Guided Transport (NGT)的轻量级模仿学习方法,适用于低数据域。NGT将模仿学习视为一个最优传输问题,通过对抗训练解决。该方法无需预训练或专用架构,并内置不确定性估计,易于实现和调整。在低数据条件下,NGT在连续控制任务中表现出色。

arXiv:2509.26294v1 Announce Type: cross Abstract: We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模仿学习 低数据域 最优传输 对抗训练 连续控制
相关文章