cs.AI updates on arXiv.org 10月01日 14:01
AttriGen:细胞显微镜多属性标注新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为AttriGen的新框架,用于计算机视觉中的自动化、细粒度多属性标注,特别关注细胞显微镜领域。该框架结合CNN和ViT模型,在PBC和WBCAtt数据集上实现94.62%的准确率,显著提高模型可解释性和效率。

arXiv:2509.26185v1 Announce Type: cross Abstract: We introduce AttriGen, a novel framework for automated, fine-grained multi-attribute annotation in computer vision, with a particular focus on cell microscopy where multi-attribute classification remains underrepresented compared to traditional cell type categorization. Using two complementary datasets: the Peripheral Blood Cell (PBC) dataset containing eight distinct cell types and the WBC Attribute Dataset (WBCAtt) that contains their corresponding 11 morphological attributes, we propose a dual-model architecture that combines a CNN for cell type classification, as well as a Vision Transformer (ViT) for multi-attribute classification achieving a new benchmark of 94.62\% accuracy. Our experiments demonstrate that AttriGen significantly enhances model interpretability and offers substantial time and cost efficiency relative to conventional full-scale human annotation. Thus, our framework establishes a new paradigm that can be extended to other computer vision classification tasks by effectively automating the expansion of multi-attribute labels.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

细胞显微镜 多属性标注 AttriGen CNN ViT
相关文章