cs.AI updates on arXiv.org 10月01日 14:01
PINNs结合李群提升PDE求解效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将物理信息神经网络(PINNs)与李群结合,以提升偏微分方程(PDEs)求解的准确性和效率。通过利用李群的无穷小生成元概念,实现了PDEs求解的显著改进。文章讨论了三个不同案例,通过李群修改和自适应技术实现了逐步改进。采用最先进的数值方法比较了逐步PINN模型,实验表明李群在提升PINNs性能中的关键作用,强调了将抽象数学概念融入深度学习解决复杂科学问题的重要性。

arXiv:2509.26113v1 Announce Type: cross Abstract: This paper presents intersection of Physics informed neural networks (PINNs) and Lie symmetry group to enhance the accuracy and efficiency of solving partial differential equation (PDEs). Various methods have been developed to solve these equations. A Lie group is an efficient method that can lead to exact solutions for the PDEs that possessing Lie Symmetry. Leveraging the concept of infinitesimal generators from Lie symmetry group in a novel manner within PINN leads to significant improvements in solution of PDEs. In this study three distinct cases are discussed, each showing progressive improvements achieved through Lie symmetry modifications and adaptive techniques. State-of-the-art numerical methods are adopted for comparing the progressive PINN models. Numerical experiments demonstrate the key role of Lie symmetry in enhancing PINNs performance, emphasizing the importance of integrating abstract mathematical concepts into deep learning for addressing complex scientific problems adequately.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PINNs 李群 偏微分方程 深度学习 数值方法
相关文章