cs.AI updates on arXiv.org 10月01日
基于LLM的Wayfair产品评论摘要系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合方面情感分析和引导摘要的LLM系统,为Wayfair平台生成简洁易懂的产品评论摘要。通过提取方面情感对,选择高频方面并采样代表性评论,构建结构化提示引导LLM生成基于真实客户反馈的摘要。系统在大型在线A/B测试中显示其实际效果,并发布包含方面和摘要的数据集。

arXiv:2509.26103v1 Announce Type: cross Abstract: We present a scalable large language model (LLM)-based system that combines aspect-based sentiment analysis (ABSA) with guided summarization to generate concise and interpretable product review summaries for the Wayfair platform. Our approach first extracts and consolidates aspect-sentiment pairs from individual reviews, selects the most frequent aspects for each product, and samples representative reviews accordingly. These are used to construct structured prompts that guide the LLM to produce summaries grounded in actual customer feedback. We demonstrate the real-world effectiveness of our system through a large-scale online A/B test. Furthermore, we describe our real-time deployment strategy and release a dataset of 11.8 million anonymized customer reviews covering 92,000 products, including extracted aspects and generated summaries, to support future research in aspect-guided review summarization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 产品评论摘要 方面情感分析 Wayfair 数据集
相关文章