cs.AI updates on arXiv.org 10月01日
不同序列来源的注意力机制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了在键值分别来自不同序列或模态的情况下,注意力机制的行为,并提出了改进的间接注意力机制,以应对噪声和上下文错配问题。

arXiv:2509.26015v1 Announce Type: cross Abstract: The attention mechanism has become a cornerstone of modern deep learning architectures, where keys and values are typically derived from the same underlying sequence or representation. This work explores a less conventional scenario, when keys and values originate from different sequences or modalities. Specifically, we first analyze the attention mechanism's behavior under noisy value features, establishing a critical noise threshold beyond which signal degradation becomes significant. Furthermore, we model context (key, value) misalignment as an effective form of structured noise within the value features, demonstrating that the noise induced by such misalignment can substantially exceed this critical threshold, thereby compromising standard attention's efficacy. Motivated by this, we introduce Indirect Attention, a modified attention mechanism that infers relevance indirectly in scenarios with misaligned context. We evaluate the performance of Indirect Attention across a range of synthetic tasks and real world applications, showcasing its superior ability to handle misalignment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

注意力机制 序列处理 噪声处理 上下文错配 间接注意力
相关文章