cs.AI updates on arXiv.org 10月01日
高效能DLGNs在多分类数据集上的表现研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了可微分逻辑门网络(DLGNs)在大型多分类数据集上的表现,探讨了其泛化能力、可扩展性以及输出层设计。通过合成和真实世界数据集的分析,揭示了温度调节对输出层性能的重要性,并评估了Group-Sum层在2000类大规模分类中的应用。

arXiv:2509.25933v1 Announce Type: cross Abstract: Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient alternative to conventional feed-forward networks. With learnable combinations of logical gates, DLGNs enable fast inference by hardware-friendly execution. Since the concept of DLGNs has only recently gained attention, these networks are still in their developmental infancy, including the design and scalability of their output layer. To date, this architecture has primarily been tested on datasets with up to ten classes. This work examines the behavior of DLGNs on large multi-class datasets. We investigate its general expressiveness, its scalability, and evaluate alternative output strategies. Using both synthetic and real-world datasets, we provide key insights into the importance of temperature tuning and its impact on output layer performance. We evaluate conditions under which the Group-Sum layer performs well and how it can be applied to large-scale classification of up to 2000 classes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可微分逻辑门网络 多分类数据集 性能评估 输出层设计 温度调节
相关文章