cs.AI updates on arXiv.org 10月01日 14:01
ExploRLer:迭代探索提升强化学习性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ExploRLer的迭代探索方法,用于增强强化学习性能,通过在迭代中系统地探索未探索的区域,在不增加梯度更新次数的情况下,显著提升复杂连续控制环境中的表现。

arXiv:2509.25876v1 Announce Type: cross Abstract: Policy-gradient methods such as Proximal Policy Optimization (PPO) are typically updated along a single stochastic gradient direction, leaving the rich local structure of the parameter space unexplored. Previous work has shown that the surrogate gradient is often poorly correlated with the true reward landscape. Building on this insight, we visualize the parameter space spanned by policy checkpoints within an iteration and reveal that higher performing solutions often lie in nearby unexplored regions. To exploit this opportunity, we introduce ExploRLer, a pluggable pipeline that seamlessly integrates with on-policy algorithms such as PPO and TRPO, systematically probing the unexplored neighborhoods of surrogate on-policy gradient updates. Without increasing the number of gradient updates, ExploRLer achieves significant improvements over baselines in complex continuous control environments. Our results demonstrate that iteration-level exploration provides a practical and effective way to strengthen on-policy reinforcement learning and offer a fresh perspective on the limitations of the surrogate objective.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 迭代探索 性能提升 连续控制 PPO
相关文章