cs.AI updates on arXiv.org 10月01日
RAE:k-NN保留的维度约简新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于正则化自编码器(RAE)的k-NN保留维度约简方法,通过优化网络参数和调整奇异值,在保持快速检索效率的同时,实现了比现有方法更好的k-NN召回率。

arXiv:2509.25839v1 Announce Type: cross Abstract: While high-dimensional embedding vectors are being increasingly employed in various tasks like Retrieval-Augmented Generation and Recommendation Systems, popular dimensionality reduction (DR) methods such as PCA and UMAP have rarely been adopted for accelerating the retrieval process due to their inability of preserving the nearest neighbor (NN) relationship among vectors. Empowered by neural networks' optimization capability and the bounding effect of Rayleigh quotient, we propose a Regularized Auto-Encoder (RAE) for k-NN preserving dimensionality reduction. RAE constrains the network parameter variation through regularization terms, adjusting singular values to control embedding magnitude changes during reduction, thus preserving k-NN relationships. We provide a rigorous mathematical analysis demonstrating that regularization establishes an upper bound on the norm distortion rate of transformed vectors, thereby offering provable guarantees for k-NN preservation. With modest training overhead, RAE achieves superior k-NN recall compared to existing DR approaches while maintaining fast retrieval efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

维度约简 k-NN保留 正则化自编码器 神经网络 检索效率
相关文章