cs.AI updates on arXiv.org 10月01日 14:00
脑机接口轮椅控制:基于EEG的Bi-LSTM-BiGRU模型研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用脑机接口技术(BCI)控制的轮椅,采用基于EEG的右左手运动想象控制机制。系统集成了Tkinter界面,并运用Bi-LSTM-BiGRU模型实现了高准确率的轮椅导航模拟。

arXiv:2509.25667v1 Announce Type: cross Abstract: This paper presents an Artificial Intelligence (AI) integrated novel approach to Brain-Computer Interface (BCI)-based wheelchair development, utilizing a motor imagery right-left-hand movement mechanism for control. The system is designed to simulate wheelchair navigation based on motor imagery right and left-hand movements using electroencephalogram (EEG) data. A pre-filtered dataset, obtained from an open-source EEG repository, was segmented into arrays of 19x200 to capture the onset of hand movements. The data was acquired at a sampling frequency of 200Hz. The system integrates a Tkinter-based interface for simulating wheelchair movements, offering users a functional and intuitive control system. We propose a BiLSTM-BiGRU model that shows a superior test accuracy of 92.26% as compared with various machine learning baseline models, including XGBoost, EEGNet, and a transformer-based model. The Bi-LSTM-BiGRU attention-based model achieved a mean accuracy of 90.13% through cross-validation, showcasing the potential of attention mechanisms in BCI applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑机接口 轮椅控制 EEG Bi-LSTM-BiGRU 机器学习
相关文章