cs.AI updates on arXiv.org 10月01日
跨模型VLM行为控制新方法VISOR++
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于通用视觉输入的VLM行为控制方法VISOR++,通过优化视觉输入实现模型行为控制,无需运行时模型访问,支持跨模型应用,有效提高了模型行为的可控性。

arXiv:2509.25533v1 Announce Type: cross Abstract: As Vision Language Models (VLMs) are deployed across safety-critical applications, understanding and controlling their behavioral patterns has become increasingly important. Existing behavioral control methods face significant limitations: system prompting approaches could easily be overridden by user instructions, while applying activation-based steering vectors requires invasive runtime access to model internals, precluding deployment with API-based services and closed-source models. Finding steering methods that transfer across multiple VLMs is still an open area of research. To this end, we introduce universal visual input based steering for output redirection (VISOR++), to achieve behavioral control through optimized visual inputs alone. We demonstrate that a single VISOR++ image can be generated for an ensemble of VLMs to emulate each of their steering vectors. By crafting universal visual inputs that induce target activation patterns, VISOR++ eliminates the need for runtime model access while remaining deployment-agnostic. This means that when an underlying model supports multimodal capability, model behaviors can be steered by inserting an image input replacing runtime steering vector based interventions. We first demonstrate the effectiveness of the VISOR++ images on open-access models such as LLaVA-1.5-7B and IDEFICS2-8B along three alignment directions: refusal, sycophancy and survival instinct. Both the model-specific steering images and the jointly optimized images achieve performance parity closely following that of steering vectors for both positive and negative steering tasks. We also show the promise of VISOR++ images in achieving directional behavioral shifts for unseen models including both open-access and closed-access ones. Furthermore, VISOR++ images are able to preserve 99.9% performance on 14,000 unrelated MMLU evaluation tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VLM 行为控制 跨模型 VISOR++ 模型行为
相关文章